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Energy barrier to decoherence
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We propose a ground-state approach to realizing quantum computers. This scheme is time-independent and
inherently defends against decoherence by possessing an energy barrier to excitation. We prove that our
time-independent qubits can perform the same algorithms as their time-dependent counterparts. Advantages
and disadvantages of the time-independent approach are described. A model involving quantum dots is pro-
vided for illustration.
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To realize the theoretical potential of quantum compu
tion @1–3#, it is essential to confront the difficult task o
designing and constructing a functioning quantum compu
@4#. An impressive body of quantum error correction liter
ture has shown how, given a limitless supply of qubits a
gates with fixed~small! decoherence, the qubits can be co
nected to execute quantum computation algorithms of a
trary complexity@5–7#. The daunting problem of supplyin
the qubits and gates, however, remains unsolved. Afte
intensive effort to find physical implementations@8–21#, it
remains unclear whether decoherence can be reduced en
to make a useful quantum computer. In this paper, instea
a specific implementation, we suggest an approach to
problem that inherently defends against decoherence wit
energy barrier@22#. This is achieved by proposing that
qubit be constructed not as a two-state quantum system
veloping throughN unitary time evolutions but, instead, as
time-independent quantum system developing throug
2(N11)-dimensional Hilbert space.

To formulate this time-independent approach to quant
computation, let us first review the usual time-dependent
proach. Suppose that a quantum algorithm requires the w
function of a qubit to develop throughN time evolutionsU j ,
j 51, . . . ,N. Here, eachU j is a two-by-two unitary matrix.
To be concrete, suppose that the qubit is realized as a s
electron that can occupy a localized state on a left quan
dot or a localized state on a right quantum dot~Fig. 1!.
Although we fully appreciate that such an implementat
may be experimentally impractical, in principle it makes
sensible qubit, and it is convenient for illustration. TheU j
coherently shift the wave function of the electron back a
forth between the two localized states in accordance wit

uc~ t i !&5Ui uc~ t i 21!& ~1!

as depicted in Fig. 2. Since the wave function consists of
amplitudes at each time, and there are (N11) times, the
progress of the algorithm can be described with 2(N11)
amplitudes.

In our time-independent approach, a qubit would not
realized as a single electron shared between two dots
instead, as a single electron shared between 2(N11) dots
~Fig. 3!. The amplitudes giving the electron’s wave functio
on each dot would supply the 2(N11) amplitudes needed t
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describe the progress of the algorithm. To show precis
how this works, suppose thatci ,0

† uvac& andci ,1
† uvac& are states

localized on the left and right dots of rowi, respectively. The
wave function of the electron,uC&, would be a superposition
of such states. If we group together the creation opera
into Ci

†5@ci ,0
† ci ,1

† #, it follows that the operatorPi5Ci
†Ci

projects onto the two-dimensional subspace of states at
i. Then, by analogy with Eq.~1!, we require that

Pi uC&5UiAi ,i 21Pi 21uC&. ~2!

Here, Ai ,i 215Ci
†Ci 21 just moves the electron from rowi

21 to row i. In words, Eq.~2! states that the wave functio
at each row is related to the wave function at the previo
row by a specified unitary transformation.

If the electron wave functionuC& satisfies Eq.~2!, then it
can be interpreted as a development according to the a
rithm, from the input stateP0uC& at row 0 to the output state
PNuC& at rowN. However, how can we force the electron
satisfy Eq.~2!? This is achieved by constructing the Ham
tonian in the 2(N11) space such that the ground-state wa
function of the system satisfies Eq.~2!.

A particularly convenient Hamiltonian is H
5( i 51

N hi(Ui), where

hi~U ![e@Ci 21
† Ci 211Ci

†Ci2~Ci
†UCi 211H.c.!# ~3!

and the constant energye defines the energy scale of th
Hamiltonian. This Hamiltonian is positive semidefinite an
has two degenerate ground states of zero energy. The
ground states both satisfy Eq.~2!, but one hasP0uC&
5c0,0

† uvac& and the other hasP0uC&5c0,1
† uvac&. The two

possibilities correspond to different possible input valu
The complete Hamiltonian for a calculation with a speci

FIG. 1. Electron shared between two quantum dots constitut
hypothetical qubit.
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input value does not possess this degeneracy, but rathe
cludes a small perturbation term so that the energies
c0,0

† uvac& andc0,1
† uvac& differ slightly. As a result, there is a

single nondegenerate ground state.
Physically, the Hamiltonian~3! would be realized in the

quantum dot system by fabricating the dots such that t
possess appropriate on-site and tunneling matrix eleme
The four values in the matrixUi would determine the four
tunneling matrix elements that connect the states in roi
21 to the states in rowi. The four values ofUi would not be
required to influence any other aspect of the array since
operator~3! has an appealing modular character: the unit
matrix Ui only enters the Hamiltonian through matrix el
ments between states on rowsi 21 andi. The small pertur-
bation added to break the degeneracy of~3! and select input
would be supplied physically by applying a voltage to one
the dots in row 0. After application of the perturbation, t
system would be annealed to its ground state. The outpu
the calculation would be obtained by measuring on which
the dots at rowN the electron can be found.

What are the advantages of this ground-state approac
quantum computation? Most importantly, it possesses a
tain robustness against decoherence. Certainly, ti
dependent or time-independent perturbations of the Ha
tonian could introduce errors into the calculation. Sta
perturbations due to imperfect implementation of the req
site Hamiltonian will adversely influence the ground state
a ground-state quantum computer is to function, such tim
independent sources of decoherence must first be rem
by testing and refining the computer apparatus.~Thus
ground-state quantum computation does not require ti
dependent control of a system, but it does demand fine
ability of a static Hamiltonian. The required precision
implementation is as high as it is in the case of tim
dependent quantum computation.! However, the inevitable
uncontrollable time-dependent perturbations from the en
ronment only influence the calculation if they excite the s
tem out of the ground state. In a traditional quantum com
tation these fluctuations lead to decoherence. In ground-s
quantum computation, such excitations can be quenche
large energy level spacings and low temperatures. While
energy spacing of the Hamiltonian~3! does decrease withN,
it can be proven that the decrease is only algebraic and
the multiple qubit case to be addressed below, need not

FIG. 2. Quantum dot qubit develops in time in accordance w
the algorithm.
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crease as more qubits are added@23#.
A second advantage to the ground-state approach is

fact that the system does not require time-dependent con
The Hamiltonian is static during any given calculation a
only changes when switching from one algorithm to anoth
~For the quantum dot example that we give, this alterat
could be implemented by using intermediate dots of adju
able voltage to control interdot tunneling rates.! This could
ease somewhat the problem of realizing a quantum c
puter.

There are two disadvantages to our ground-state appro
that should be pointed out. First, rather than having a sm
system that evolves in time throughN time steps before de
coherence sets in, we requireN11 copies of the small sys
tem. This could be an inefficient use of hardware.~Although
it must be noted that a small time-dependent system
require a tremendous amount of hardware to control its e
lution.! Second, to detect the results of a calculation, an e
tron must be measured in rowN. Since this does not occu
with certainty, there is a chance that the system will have
be annealed to the ground state again after an unsucce
measurement. However, it is possible to reduce this prob
drastically by adjustinghN(U) in the Hamiltonian~3! to read

hN~U ![eFCN21
† CN211

1

l2
CN

† CN2
1

l
~CN

† UCN211H.c.!G .

~4!

This will change the ground state so that, while it still sat
fies Eq.~2!, the probability that the electron is at the last ro
is enhanced by a factor ofl2/@l21(N21)#. For l;N, the
probability of an unsuccessful measurement becomes sm

Up to this point, we have focused upon a single qubit.
perform useful quantum computations, we must consider
M qubit case. It is natural to redefineuC& to be anM qubit
state,Uj to be a 2M by 2M unitary operator specified by th
algorithm, Pi[)aCa,i

† Ca,i to be a multiple qubit projector
and Ai ,i 21[)aCa,i

† Ca,i 21 to be a multiple qubit mover,
where the indexa specifies the qubit upon which a give
operator acts. Unfortunately, if we simply insert these red
nitions into Eq.~2!, the result constrains but does not ful
specify theM qubit wave function. It contains no informa

h FIG. 3. Electron in an array of quantum dots forms a sin
qubit. Amplitude of wave function develops through array in acc
dance with the algorithm. Lines indicate tunneling paths.
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tion about those terms in the many body wave function t
are annihilated by every projectorPi , i.e., terms in which
not all electrons are at the same row of the computer.
must posit a development equation that will specify all the
terms ~which have no analog in time-dependent quant
computation!, but will result in auC& that is the ground state
of a simple Hamiltonian. This is achieved by defininguC j&
to be the ground state of a hypothetical computer, with o
j of the actual computer’sN rows, and requiring

uC j&5 )
a51

M

~11Ca, j
† Ua, jCa, j 21!uC j 21&. ~5!

It is straightforward to check that this more specific equat
implies the multiple qubit redefinition of Eq.~2! and the
appropriate Hamiltonian is just the sum of the familiar o
qubit Hamiltonians~3!.

With Eq. ~5!, we are now in a position to include th
essential two qubit controlled-NOT gate. Assume the algo
rithm specifies as thej th operationUj a controlled-NOT of
qubit B by qubit A and unitary operationsUa, j on the other
qubitsaÞA,B. The desired multiple qubit redefinition of Eq
~2! will still hold if we modify Eq. ~5! at row j to read

uC j&5@11cA, j ,0
† cA, j 21,0~11CB, j

† CB, j 21!

1cA, j ,1
† cA, j 21,1~11CB, j

† NCB, j 21!#

3 )
aÞA,B

~11Ca, j
† Ua, jCa, j 21!uC j 21&, ~6!

whereN is the two-by-twoNOT matrix ~the Pauli matrixsx).
The actual ground state will satisfy this requirement if t
Hamiltonian is a sum of one-qubit Hamiltonians~3! and a
two-body term of the form

hA,B
j ~CNOT!5eCA, j 21

† CA, j 21CB, j
† CB, j1hA

j ~ I !CB, j 21
† CB, j 21

1cA, j ,0
† cA, j ,0hB

j ~ I !1cA, j ,1
† cA, j ,1hB

j ~N!. ~7!
on
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o-
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Physically, in the quantum dot realization, the terms in E
~7! correspond to having the location of one qubit influen
~by the Coulomb interaction! the tunneling matrix element
of another qubit.

We note in conclusion that the idea of using a tim
independent Hamiltonian for quantum computation has b
raised before@24,25#. This prior work, however, aimed to
perform the usual time-dependent quantum computation
ing a static ‘‘cursor Hamiltonian.’’ Such an approach~i! re-
quires tailoring a Hamiltonian with specific three-particle i
teractions and~ii ! demands time-dependent state preparat
and measurement. In addition, it~iii ! is particularly suscep-
tible to decoherence in the form of unintended reflectio
@26# that are not relevant to our design. The ‘‘cursor Ham
tonian’’ is probably, therefore, unfeasible. Our approa
does not suffer from these basic problems, but its ultim
viability can only be assessed by developing specific imp
mentations. Our quantum dot array implemention seems
realistic ~although it is encouraging to note that a classi
computation scheme using coupled quantum dots has b
implemented@27,28#!. However, many other possibilitie
could be envisioned, e.g., the 2(N11) states of a single
qubit could take different locations in momentum spa
rather than different locations in real space. Perhaps it
even turn out to be fruitful to combine the approach we d
scribe here with other ways of handling decoheren
@5–7,29#.

We thank D. DiVincenzo for calling to our attention th
‘‘cursor Hamiltonian’’ approach of Refs.@24,25#. We also
thank A. E. Charman for pointing out the research of Re
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Contract No. DE-AC03-76SF00098; and the Office of Nav
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